★ Find a new page on our Untranscribed Manuscripts list.
Auto loaded |
No edit summary |
||
Line 3: | Line 3: | ||
<!-- ENTER TRANSCRIPTION BELOW THIS LINE --> | <!-- ENTER TRANSCRIPTION BELOW THIS LINE --> | ||
<p>the angles which stand upon<lb/>nces are equal to one another<lb/>at the centers or circumfe- | |||
</p>-----<p><head>XXXII Theor</head>touches a circle, & from the point<lb/>line be drawn cutting the circle,<lb/>this line with the line touching<lb/>be equal to the angles which<lb/>te segments of the circle.</p>-----<p><head>XXXVII Theor</head>without a circle there be drawn<lb/>one of which cuts the circle,<lb/>it; if the rectangle of the<lb/>cuts the circle, and the part<lb/>circle be equal to the square of<lb/>ects it, the line which meets<lb/>circle. —</p><pb/><p>In equal circles equal straight lines cut off equal<lb/>circumferences, the greater equal to the greater,<lb/>and the less to the less.</p>-----<p><head>Prop XXXIII Prob.</head>Upon a given straight line to describe a segment<lb/>of a circle, containing an angle equal to a given<lb/>rectilineal angle.</p><pb/><p>In equal circles equal circumferences, are<lb/>subtended by equal straight lines. —</p>-----<p><head>Prop XXXIV Prob.</head>To cut off a Segment from a given circle<lb/>which shall contain an angle equal to a given<lb/>rectilineal angle.</p><pb/><head>ok the Fourth --</head><p><head>Prop IV Prob.</head>To inscribe a circle in a given<lb/>triangle.</p>-----<p><head>Prop X Prob</head>To describe an <sic>Iscoceles</sic> triangle<lb/>habing each of the angles of the<lb/>base double the third angle.</p>-----<p><head>Prop XVI Prob.</head>To describe an equilaetral and<lb/>equiangular <add>quindecagon</add> <del>triangle</del> in a given circle.</p><pb/><p><head>Prop V Prob</head>To describe a Circle about a given<lb/>triangle.</p>-----<p><head>Prop XII Prob</head>To describe an equilateral &<lb/>equiangular pentagon in a given Circle.</p><pb/><p><head>Prop VI Prob</head>To inscribe a Square in a given<lb/>Circle.</p>-----<p><head>Prop <sic>XII</sic> Prob</head>To describe an equilateral and<lb/>equiangular pentagon about a<lb/>given Circle.</p> | |||
<!-- DO NOT EDIT BELOW THIS LINE --> | <!-- DO NOT EDIT BELOW THIS LINE --> | ||
{{Metadata:{{PAGENAME}}}} | {{Metadata:{{PAGENAME}}}} |
the angles which stand upon
nces are equal to one another
at the centers or circumfe-
-----
XXXII Theortouches a circle, & from the point
line be drawn cutting the circle,
this line with the line touching
be equal to the angles which
te segments of the circle.
-----
XXXVII Theorwithout a circle there be drawn
one of which cuts the circle,
it; if the rectangle of the
cuts the circle, and the part
circle be equal to the square of
ects it, the line which meets
circle. —
---page break---
In equal circles equal straight lines cut off equal
circumferences, the greater equal to the greater,
and the less to the less.
-----
Prop XXXIII Prob.Upon a given straight line to describe a segment
of a circle, containing an angle equal to a given
rectilineal angle.
---page break---
In equal circles equal circumferences, are
subtended by equal straight lines. —
-----
Prop XXXIV Prob.To cut off a Segment from a given circle
which shall contain an angle equal to a given
rectilineal angle.
---page break---
ok the Fourth --
Prop IV Prob.To inscribe a circle in a given
triangle.
-----
Prop X ProbTo describe an Iscoceles triangle
habing each of the angles of the
base double the third angle.
-----
Prop XVI Prob.To describe an equilaetral and
equiangular quindecagon triangle in a given circle.
---page break---
Prop V ProbTo describe a Circle about a given
triangle.
-----
Prop XII ProbTo describe an equilateral &
equiangular pentagon in a given Circle.
---page break---
Prop VI ProbTo inscribe a Square in a given
Circle.
-----
Prop XII ProbTo describe an equilateral and
equiangular pentagon about a
given Circle.
Identifier: | JB/135/073/005"JB/" can not be assigned to a declared number type with value 135. |
|||
---|---|---|---|
135 |
|||
073 |
the propositions of the third and fourth books of euclid as expressed by simson |
||
005 |
|||
private material |
2 |
||
recto |
|||
sir samuel bentham |
[[watermarks::[tall thin motif with prince of wales feathers] icv]] |
||
46191 |
|||